
N8n Automation Nodes Cheat Sheet
This cheat sheet provides JSON configuration snippets for common n8n nodes, categorized
by function. Each snippet shows how to use the node programmatically (as it would appear in a
workflow's JSON). Use these examples as templates for building workflows. (Note: Replace
placeholder values like YOUR_API_KEY or YOUR_ID with real values. Credentials are referenced
by name/id after you set them up in n8n.)

AI & LLM Integrations
OpenAI Chat Model (GPT-3.5/GPT-4): Uses OpenAI’s Chat API to generate responses. You
specify the model, prompts, and parameters like temperature. This node can take a system
prompt and user prompt to generate a completion. For example, to use the GPT-3.5 Turbo
model with a system role and user message:

github.com
【46†L17-L24**
json
Copy
{
 "name": "ChatGPT",
 "type": "n8n-nodes-langchain.lmChatOpenAi",
 "typeVersion": 1,
 "parameters": {
 "model": "gpt-3.5-turbo",
 "temperature": 0.7,
 "maxTokens": 500,
 "systemPrompt": "You are a helpful assistant.",
 "userPrompt": "Hello! How can I automate tasks with n8n?"
 },
 "credentials": {
 "openAiApi": {
 "id": "YOUR_CRED_ID",
 "name": "OpenAI API"
 }
 }
}

https://github.com/n8n-io/n8n/issues/13696#:~:text=The%20automatically%20generated%20parameter%20description,langchain.lmChatOpenAi

Explanation: This config sets the OpenAI Chat node to use the GPT-3.5 model with a system
message providing context and a user message. The response will be available as the node’s
output. Ensure you have an OpenAI API credential named “OpenAI API” configured, referenced
in credentials. You can adjust temperature for randomness and maxTokens for length.

OpenAI Text Completion: For GPT-3 text completion models (like text-davinci-003), you
can use the OpenAI node in completion mode. Provide a prompt and parameters. For example:

docs.n8n.io
【48†L15-L22**
json
Copy
{
 "name": "OpenAI Completion",
 "type": "n8n-nodes-langchain.openai",
 "typeVersion": 1,
 "parameters": {
 "model": "text-davinci-003",
 "prompt": "Summarize the following text: {{$json[\"content\"]}}",
 "temperature": 0.5,
 "maxTokens": 200
 },
 "credentials": {
 "openAiApi": {
 "name": "OpenAI API"
 }
 }
}

Explanation: This will send a prompt to OpenAI’s completion endpoint to summarize some
content from the input data. The {{$json["content"]}} syntax inserts data from the
previous node. The node uses the OpenAI API credentials. The output appears in the node’s
JSON (result field containing the completion text).

AI Agents (with Tools): n8n supports advanced Agent nodes that let an AI model use tools
(like web search, calculators, or other node functions) to fulfill tasks

docs.n8n.io
. For example, the OpenAI Functions Agent can call custom functions, and the ReAct Agent
uses the ReAct strategy to decide which tool to use at each step. Below is a simplified example

https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-langchain.openai/#:~:text=URL%3A%20https%3A%2F%2Fdocs.n8n.io%2Fintegrations%2Fbuiltin%2Fapp,to%20content
https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-langchain.openai/#:~:text=Some%20operations%20allow%20you%20to,access%20extra%20context%20or%20resources

of an AI Agent node configuration using an OpenAI model and a tool (e.g., a Google Search
tool):
json
Copy
{
 "name": "AI Agent (ReAct)",
 "type": "n8n-nodes-langchain.agent",
 "typeVersion": 1,
 "parameters": {
 "agentType": "react", // Agent type: "react",
"functions", "planAndExecute", etc.
 "model": "gpt-4", // Underlying LLM model
 "memory": false, // Whether to use conversational
memory
 "tools": [
 {
 "name": "googleSearch", // A connected tool node's name
 "input": "What is n8n?" // Sample query the agent will use
this tool for
 }
]
 }
}

Explanation: This agent is configured to use the ReAct strategy with GPT-4. The tools array
would correspond to actual Tool nodes connected to the Agent node (for example, a Google
Search node in the workflow). In practice, you add tools via the editor UI (they become
sub-nodes). The agent will decide when to use the tool. For instance, it might use the Google
Search tool to retrieve information needed to answer a question. Note: The agent node cluster
handles the logic; ensure you have the appropriate tool nodes and credentials (like Google API
keys) set up. Agents can also use other modes like OpenAI Functions Agent,
Plan-and-Execute Agent, or SQL Agent, each allowing the AI to perform specific complex
tasks (e.g., call defined functions, break a task into sub-tasks, or run SQL queries via provided
DB credentials).

Embeddings and Vector Stores: n8n provides nodes to generate text embeddings with
models (OpenAI, Cohere, Google PaLM, etc.) and to store/retrieve them in vector databases
(Pinecone, Weaviate, etc.). For example, the OpenAI Embeddings node can take text and
return a vector. Usage is straightforward: you specify the text field to embed and the model. The

output is usually an array of numbers representing the vector. These can be used with a Vector
Store node (like Pinecone) to add or query vectors. Example for an OpenAI Embedding node:

json
Copy
{
 "name": "Text to Vector",
 "type": "n8n-nodes-langchain.embeddingsOpenAi",
 "typeVersion": 1,
 "parameters": {
 "model": "text-embedding-ada-002",
 "text": "={{ $json[\"content\"] }}"
 },
 "credentials": {
 "openAiApi": {
 "name": "OpenAI API"
 }
 }
}

Explanation: This takes the content field from input JSON and generates a 1536-dimensional
embedding using OpenAI's ada model. You would typically send this vector to a storage or use it
in a similarity search. For storing, a Pinecone (or other vector DB) node can be used, with
operations like Insert Vector or Query Vector (you provide the index name, vector data,
and any metadata or query vectors as needed). Because vector store usage can be complex,
refer to the specific node docs for exact parameter names. The key concept is that
Embeddings nodes convert text to numerical vectors, and Vector Store nodes allow saving
and searching those vectors, enabling workflows like semantic search or retrieval-augmented
generation.

API & Webhook Integrations
HTTP Request Node (REST APIs): This is the universal node to call any RESTful API. You can
configure method, URL, headers, query params, and body (including JSON body). It supports
authentication via credentials (OAuth2, API token, etc.) or custom headers. Below is an
example GET request with query parameters:

community.faros.ai

community.faros.ai
json

https://community.faros.ai/docs/quickstart-step-5#:~:text=,
https://community.faros.ai/docs/quickstart-step-5#:~:text=%7D%2C%20%22name%22%3A%20%22GraphQL%22%2C%20%22type%22%3A%20%22n8n,

Copy
{
 "name": "HTTP GET Example",
 "type": "n8n-nodes-base.httpRequest",
 "typeVersion": 1,
 "parameters": {
 "url": "https://api.example.com/data",
 "method": "GET",
 "responseFormat": "json",
 "queryParametersUi": {
 "parameter": [
 { "name": "q", "value": "search term" },
 { "name": "limit", "value": "10" }
]
 }
 }
}

To perform a POST with a JSON body, use jsonParameters: true and provide the
bodyParametersJson object (or form data, etc.). For example, a POST request:

json
Copy
{
 "name": "HTTP POST Example",
 "type": "n8n-nodes-base.httpRequest",
 "typeVersion": 1,
 "parameters": {
 "url": "https://api.example.com/posts",
 "method": "POST",
 "responseFormat": "json",
 "jsonParameters": true,
 "options": {
 "bodyContentType": "json"
 },
 "bodyParametersJson": {
 "title": "Hello World",
 "content": "This is an example post via n8n."
 }

 },
 "credentials": {
 "httpBasicAuth": {
 "name": "Example API Auth"
 }
 }
}

Explanation: This POST will send a JSON payload with title and content. We set
bodyContentType to JSON to ensure the Content-Type: application/json header.
The credentials section (optional) can reference an HTTP Basic Auth, OAuth2, or API Key
credential if needed for the API. The HTTP node is very flexible – you can also use it for
GraphQL by sending a GraphQL query in the body or using the dedicated GraphQL node.

GraphQL Node: The GraphQL node is a convenience wrapper for GraphQL APIs. You specify
the endpoint URL and the GraphQL query or mutation. It’s essentially similar to an HTTP POST
but simplifies sending the query. For example:

community.faros.ai

community.faros.ai
json
Copy
{
 "name": "GraphQL Query",
 "type": "n8n-nodes-base.graphql",
 "typeVersion": 1,
 "parameters": {
 "endpoint": "https://api.spacex.land/graphql/",
 "query": "query Launches($limit:Int!) {\n launchesPast(limit:
$limit) {\n mission_name\n launch_date_utc\n }\n}",
 "variables": "{ \"limit\": 3 }",
 "headerParametersUi": {
 "parameter": [
 { "name": "Authorization", "value": "Bearer YOUR_API_TOKEN" }
]
 }
 }
}

https://community.faros.ai/docs/quickstart-step-5#:~:text=,
https://community.faros.ai/docs/quickstart-step-5#:~:text=%7D%2C%20%22name%22%3A%20%22GraphQL%22%2C%20%22type%22%3A%20%22n8n,

Explanation: This will query the SpaceX GraphQL API for the last 3 launches. We included a
bearer token in headers (if the API required auth). The result will be JSON in the node’s output.
The GraphQL node automatically sends the request as JSON to the endpoint. If needed, you
can also pass dynamic data by using n8n expressions inside the query or variables.

Webhook Trigger: The Webhook node starts a workflow via an incoming HTTP request. You
provide a path (which becomes part of the URL n8n listens on) and optional HTTP method,
authentication, and response settings. Example of a basic webhook that triggers on a POST
request:

community.n8n.io

community.n8n.io
json
Copy
{
 "name": "Webhook Trigger",
 "type": "n8n-nodes-base.webhook",
 "typeVersion": 1,
 "parameters": {
 "path": "incoming-data",
 "methods": ["POST"],
 "responseMode": "onReceived",
 "responseData": {
 "statusCode": 200,
 "body": "Webhook received successfully"
 }
 }
}

Explanation: This creates a webhook at URL /webhook/incoming-data (the full URL is
shown in n8n UI, including host and unique ID if not using a custom URL). It listens for POST
requests. responseMode: onReceived means n8n will immediately send a response as
soon as the request is received (without waiting for the whole workflow to finish), and we
provide a static 200 OK response body. If you set responseMode to “lastNode” (default), the
webhook will wait and respond with whatever the last node in the workflow returns. Use that
mode if you want to return processed data. You can access incoming request data in the
subsequent nodes: query parameters and body will be available in the JSON (e.g.,
{{$json["body"]["fieldName"]}}). This is ideal for creating webhooks for services like
Stripe, GitHub, etc., or for custom integrations.

https://community.n8n.io/t/notion-database-page-get-all-not-supporting-multiple-input-items/6523#:~:text=%7B%20,base.webhook
https://community.n8n.io/t/notion-database-page-get-all-not-supporting-multiple-input-items/6523#:~:text=,

Respond to Webhook: When using the default lastNode response mode for webhooks, the
final node’s output becomes the response. But if you need to craft a custom response or send a
reply mid-workflow, n8n offers a Respond to Webhook node. This node lets you explicitly
return a status, headers, and body. For example, to return a JSON payload:

json
Copy
{
 "name": "Webhook Response",
 "type": "n8n-nodes-base.respondToWebhook",
 "typeVersion": 1,
 "parameters": {
 "responseMode": "responseNode",
 "options": {
 "responseData": {
 "body": "{ \"success\": true, \"message\": \"Processed\" }",
 "headers": {
 "Content-Type": "application/json"
 },
 "statusCode": 200
 }
 }
 }
}

Explanation: Place this node in your workflow where you want to terminate and respond to the
waiting webhook caller. After this node executes, n8n sends the specified response and will not
wait for further nodes (downstream nodes won’t run). If you want to keep the workflow running
after responding, use the option “respond and continue”. In most simple cases, you don’t
need this node and can just let the workflow end with the desired output, but it’s useful for
advanced control (e.g., send an immediate acknowledgment and then continue processing data
in the background).

Data Processing & Logic Nodes
Code (Function) Node: The Code node (formerly the Function node) allows you to write
custom JavaScript (and in recent versions, optionally Python) to manipulate data. It can operate
on incoming items or generate new data. The JSON snippet for a Code node includes your
code as a string in functionCode. For example, a code node that adds a new field to each
item:

community.faros.ai
json
Copy
{
 "name": "Add Field",
 "type": "n8n-nodes-base.function",
 "typeVersion": 1,
 "parameters": {
 "functionCode": "for (const item of items) {\n item.json.newField
= item.json.someField + 100;\n}\nreturn items;"
 }
}

Explanation: This JavaScript code loops through each input item (items is an array of objects {
json: {...}, binary: {...} }) and appends a new field. Here we set newField to
someField + 100 as an example calculation. The node must return items; at the end.
After this runs, downstream nodes see the modified items. You can log to the console or
perform more complex transformations. If you set No Inputs, the code node can act as a data
generator (e.g., create an array of objects from scratch). The Code node is extremely powerful
for any logic not covered by other nodes. (Note: n8n also supports a separate Code (Python)
mode if enabled, where you can write Python code. In JSON, this would include "language":
"python" and the code in a similar field.)

IF Node (Conditional): The IF node routes data based on conditions (true/false). It has two
outputs: true (first output) and false (second output). In the JSON, you define conditions. You
can compare numbers, strings, booleans, etc., and combine conditions with AND/OR
(combinator). Here’s an example IF node that checks if the field status equals "success":

community.n8n.io

community.n8n.io
json
Copy
{
 "name": "Check Status",
 "type": "n8n-nodes-base.if",
 "typeVersion": 2,
 "parameters": {
 "conditions": {
 "conditions": [

https://community.faros.ai/docs/quickstart-step-5#:~:text=%7B%20,Summarize
https://community.n8n.io/t/how-to-handle-this-if-node/87709#:~:text=%E2%80%9Cid%E2%80%9D%3A%20%E2%80%9C4f5dd8f0,%5D%2C%20%E2%80%9Ccombinator%E2%80%9D%3A%20%E2%80%9Cor%E2%80%9D
https://community.n8n.io/t/how-to-handle-this-if-node/87709#:~:text=%7D%2C%20%E2%80%9ClooseTypeValidation%E2%80%9D%3A%20true%2C%20%E2%80%9Coptions%E2%80%9D%3A%20,920%2C%20460

 {
 "leftValue": "={{ $json[\"status\"] }}",
 "rightValue": "success",
 "operator": {
 "type": "string",
 "operation": "equals"
 }
 }
],
 "combinator": "and"
 }
 }
}

Explanation: This IF node will output any incoming item to the true branch if the item’s JSON
status field is the string "success". All other items go to the false branch. The JSON structure
under parameters.conditions can include multiple rules; here we have one rule comparing
a string. leftValue uses an expression to pull the item’s status. We set the operator type to
"string" and operation "equals". The IF node supports other operations (e.g., contains, greater,
less, regex matches, etc.) and data types (number, boolean, date, etc.). The combinator is
used if you have multiple conditions – for example, you could set two conditions and use
"combinator": "and" to require both true. Important: The IF node does not filter out items
entirely; it routes them. So items always go to either the true output or false output. If you want
to stop items, you might follow with other logic (or use the IF in combination with the Merge
node to filter, as described below).

Switch Node (Multiple Routing): The Switch node is like a multi-IF or a switch/case statement.
It lets you define multiple rules and up to … outputs. Each incoming item goes to the first
matching output (or all matching, if configured), or to a fallback if no rule matches. For example,
a Switch that routes based on a category field:

github.com

github.com
json
Copy
{
 "name": "Route by Category",
 "type": "n8n-nodes-base.switch",
 "typeVersion": 1,

https://github.com/n8n-io/n8n/issues/4698#:~:text=,3
https://github.com/n8n-io/n8n/issues/4698#:~:text=%7B%20,%7D

 "parameters": {
 "dataType": "string",
 "value1": "={{ $json[\"category\"] }}",
 "rules": {
 "rules": [
 { "operation": "equal", "value2": "support" }, // Output 0
if category == "support"
 { "operation": "equal", "value2": "sales" } // Output 1
if category == "sales"
]
 },
 "fallbackOutput": 2
 }
}

Explanation: This Switch node looks at the category value. If it equals "support", the item goes
out via output 0 (first output); if "sales", via output 1; anything else falls through to output 2 (the
fallback). We set dataType: "string" since we are comparing strings. The rules array
defines two cases. fallbackOutput: 2 means we have configured a third output for "none of
the above". In the editor, you would set Number of Outputs to 3 in this case. You can add more
rules for additional outputs. The operations can be equality, contains, greater than, etc., similar
to IF. You can also switch on numbers, booleans, dates, or even use a JavaScript expression
mode to direct items to an output index. The Switch node is useful for branching logic in
workflows (e.g., handling different event types or categories differently).

Set Node (Edit Fields): The Set node allows you to add, remove, or rename fields in the JSON
data without coding. It’s often used to prepare or clean data. In JSON, you configure an
assignments list for new values and you can toggle options to keep or delete other fields.
Here’s an example that sets two new fields and keeps existing data:

community.n8n.io

community.n8n.io
json
Copy
{
 "name": "Set Fields",
 "type": "n8n-nodes-base.set",
 "typeVersion": 3,
 "parameters": {

https://community.n8n.io/t/how-to-handle-this-if-node/87709#:~:text=,%E2%80%9CBatch_ID%E2%80%9D%2C%20%E2%80%9Cvalue%E2%80%9D%3A%2082%2C%20%E2%80%9Ctype%E2%80%9D%3A%20%E2%80%9Cnumber%E2%80%9D
https://community.n8n.io/t/how-to-handle-this-if-node/87709#:~:text=%5D%20%7D%2C%20%E2%80%9Coptions%E2%80%9D%3A%20,1540%2C%20460

 "keepOnlySet": false,
 "values": {
 "number": [
 {
 "name": "year",
 "value": 2025
 }
],
 "string": [
 {
 "name": "statusMessage",
 "value": "Processed by n8n"
 }
]
 }
 }
}

Explanation: This Set node will add a numeric field year with value 2025 and a string field
statusMessage with a static text. Because keepOnlySet is false, it will retain all existing
fields from input items and just append these two. If keepOnlySet were true, the output would
only have the fields we explicitly set (useful if you want to discard other data). The Set node can
handle multiple data types (notice we used a number and a string; you could also set boolean,
date, etc. using the respective sections). If you want to remove certain fields, you can use the
Remove Fields option (in JSON, there’s a options.removeFields you could list). The Set
node is handy for mapping data before sending to an API or after receiving data to simplify
output.

Merge Node: The Merge node takes two input streams and combines them. It can work in
different modes: Append (just concatenates items), Wait (waits for both inputs then output
together), Merge By Index (pair items one-to-one by their index), or Merge By Key (match
items from two inputs on a key value). The JSON structure will have mode and possibly a
propertyName or joinBy depending on mode. Example of using Merge in “By Key” mode to
join data from two sources on an id field:

json
Copy
{
 "name": "Merge on ID",
 "type": "n8n-nodes-base.merge",

 "typeVersion": 1,
 "parameters": {
 "mode": "mergeByKey",
 "propertyName": "id",
 "outputDataFrom": "both"
 }
}

Explanation: This Merge is set to mergeByKey on the field id. It expects that each input has
items with an id property. It will output a single stream of merged items: each output item
combines the JSON from input1 and input2 where the id matched. The outputDataFrom:
"both" means the output item will include fields from both inputs (you could also choose to
output only data from one side, with the other just used to match). For using Merge, connect
one node to Input 1 and another to Input 2 of this node. If an id from one side doesn’t find a
match on the other, that item can be dropped or passed through depending on additional
options (options.outputMissing...). Other modes: Append simply concatenates Input1
and Input2 items (one after the other), Wait will pause until both inputs have executed (then
output both sets; useful to synchronize parallel branches), Merge By Index takes item 0 from
Input1 with item 0 from Input2, item 1 with item 1, etc., combining their JSON (you’d typically
only use that if both inputs are same length and order). The Merge node is crucial for more
complex flows where data splits and needs to come back together.

Item Lists (Aggregate) Node: The Item Lists node (previously called Aggregate in some
contexts) helps manipulate arrays of items – for example, splitting an array into individual items
or aggregating multiple items into one array. One common use is to split a single item that
contains an array into separate items (each with one element of the array). Conversely, it can
aggregate many items into a single array. A typical configuration for splitting might look like:

json
Copy
{
 "name": "Split Array",
 "type": "n8n-nodes-base.itemLists",
 "typeVersion": 1,
 "parameters": {
 "operation": "splitIntoItems",
 "property": "results"
 }
}

Explanation: If an incoming item has a field results which is an array (e.g., from an HTTP
response or a previous computation), this node will output each element of results as a
separate n8n item. The operation: "splitIntoItems" and specifying the property to split
on does this. The opposite can be done with operation: "aggregateItems" which can
collect all input items’ data into a single array on one item (you specify how to aggregate, like
collect all values of a field into an array). There are also other list operations (like removing
duplicates, sorting items by a field, etc.). The Item Lists node is very useful for managing array
data without writing code – for instance, splitting an API response that returned a list of records
into individual items for further processing.

Looping (Split/Batches): n8n doesn’t use traditional loops; instead, it processes multiple items
in parallel through nodes. To explicitly loop a certain way, you can use the Split In Batches
node (called “Loop Over Items” in UI). This node allows you to process items in batches and
iterate. JSON example to process 10 items at a time:

json
Copy
{
 "name": "Batch Loop",
 "type": "n8n-nodes-base.splitInBatches",
 "typeVersion": 1,
 "parameters": {
 "batchSize": 10
 }
}

Explanation: Connect the SplitInBatches node in your flow where you want to throttle or loop
through items. In the first run, it will pass the first 10 items forward and hold the rest. At the end
of the loop (you must connect the last node in the loop back into the SplitInBatches node’s
input2), the SplitInBatches node will send the next batch when triggered from that second input.
This essentially creates a loop: after the last node, connect it back to the SplitInBatches (select
“Execute Next Batch” input). This is advanced usage for scenarios where you need to avoid
processing all items at once (e.g., rate limiting API calls or handling large lists chunk by chunk).
The loop ends when no more items remain; you can detect that using a Run IF connected to the
“No Items” output of SplitInBatches (or simply let the workflow end after no more batches).

Error Handling (Try/Catch): For automation, you might want to handle errors gracefully. n8n
has an Error Trigger node that can catch workflow errors globally, and a Continue On Fail
option per node. While not a typical “node” to call programmatically, note that in the workflow
JSON you can set "continueOnFail": true on any node’s parameters to prevent a node
failure from stopping the workflow. Additionally, you can use the Stop And Error node to

deliberately throw an error with a custom message (to, say, halt execution based on a condition
and mark workflow as failed). A Stop And Error node JSON would look like:

json
Copy
{
 "name": "Stop on Condition",
 "type": "n8n-nodes-base.stopAndError",
 "typeVersion": 1,
 "parameters": {
 "message": "Terminating workflow due to business rule X"
 }
}

If this node executes, it will stop the workflow and produce an error with the given message.
Use it after an IF or other check if you want to gracefully stop when something isn't right (instead
of continuing). For catching errors, the Error Trigger is placed in a separate workflow; when any
workflow errors, it can capture details and, for example, send an alert via email or Slack.

Workflow Automation & Triggers
Cron Trigger (Schedule): The Cron node (also called Schedule Trigger) starts workflows on
time-based schedules. You can configure it to run at fixed times (every day at X, every week on
Y, etc.) or at intervals. JSON configuration has a triggerTimes array. For example, to run
every day at 9:00 AM and 5:00 PM:

community.n8n.io

github.com
json
Copy
{
 "name": "Daily Schedule",
 "type": "n8n-nodes-base.cron",
 "typeVersion": 1,
 "parameters": {
 "triggerTimes": {
 "item": [
 { "hour": 9, "minute": 0 },
 { "hour": 17, "minute": 0 }

https://community.n8n.io/t/github-releases-workflow/5156#:~:text=Github%20Releases%20Workflow%20,base.cron
https://github.com/n8n-io/n8n/issues/2810#:~:text=...%20github.com%20%20...%20triggerTimes,base.cron

]
 }
 }
}

Explanation: This sets two trigger times (Cron will handle both). The first object is 9:00, second
is 17:00 (5 PM). By default, if you only specify hour/minute, it runs every day at that time. You
can add "weekday": ["Monday","Tuesday",...] or "dayOfMonth": [...] to refine
the schedule. Alternatively, Cron can be set in simple modes: "mode": "everyMinute" or
"mode": "everyX" with a value and unit. For example, to trigger every 15 minutes:
{"item": [{ "mode": "everyX", "value": 15, "unit": "minutes" }] }.
Cron triggers are great for daily reports, routine data syncs, etc. This node has no input; it
simply fires on schedule and passes an empty item to start the workflow.

Email Trigger (IMAP): The Email Trigger node watches an IMAP inbox for new emails.
Configuration includes server, email credentials, search criteria, etc. In JSON, it appears with
those details (which are mostly sensitive like host, port, etc., so we won't list a full example
here). Key fields: "mailbox": "INBOX" (or label/folder), "criteria": "UNSEEN" (to get
unread emails), and your IMAP credentials reference. When triggered, the node outputs email
data (subject, body, attachments as binary). Example snippet (with placeholders):

json
Copy
{
 "name": "Email Trigger",
 "type": "n8n-nodes-base.emailReadImap",
 "typeVersion": 1,
 "parameters": {
 "mailbox": "INBOX",
 "postProcessAction": "read",
 "options": {
 "criteria": "UNSEEN"
 }
 },
 "credentials": {
 "imap": {
 "name": "My Email Account"
 }
 }
}

Explanation: This checks the INBOX of the configured email account for unseen messages and
marks them as read (postProcessAction: "read"). For each new email, it triggers the
workflow with the email content. Use this for automations like parsing incoming support emails
or lead notifications. You can combine it with an IF node to filter emails by subject, etc., and then
route them (e.g., create tickets, send alerts, etc.).

Manual Trigger: The Manual Trigger is simply a node to start the workflow by clicking “Execute
Workflow” in the editor. It has no parameters in JSON beyond defaults. Example:

json
Copy
{
 "name": "Manual Trigger",
 "type": "n8n-nodes-base.manualTrigger",
 "typeVersion": 1,
 "parameters": {}
}

Explanation: You typically wouldn’t include this in an exported workflow JSON if you plan to run
it automatically, but it’s useful during development. It produces one empty item to kick off the
flow.

Workflow Trigger (Execute Workflow): n8n allows one workflow to call another. There are two
nodes for this: Execute Workflow (in the caller workflow) and Workflow Trigger (in the callee
workflow). In the sub-workflow that is being called, you use a Workflow Trigger node to receive
the call (essentially acts like Webhook but internal). In the parent workflow, you use Execute
Workflow to invoke. Example of an Execute Workflow node that calls a sub-workflow by ID and
waits for result:

community.n8n.io
【50†L1432-L1440**
json
Copy
{
 "name": "Run Sub-workflow",
 "type": "n8n-nodes-base.executeWorkflow",
 "typeVersion": 1,
 "parameters": {
 "workflowId": "123", // The ID or name of the workflow to
execute

https://community.n8n.io/t/header-credential-failing-to-connect-or-authorize-the-n8n-getall-workflow-action/74833#:~:text=...%20community.n8n.io%20%20%E2%80%9Ctype%E2%80%9D%3A%20%E2%80%9Cn8n,%E2%80%9Cparameters

 "waitForCompletion": true,
 "inputs": {
 "inputData": "={{ $json[\"data\"] }}"
 }
 }
}

Explanation: This will execute the workflow with ID 123 (you can find a workflow’s ID in its URL
or list). It passes an input field inputData to the sub-workflow (the sub-workflow’s Workflow
Trigger node should be configured to accept that field). If waitForCompletion is true, the
parent workflow pauses until the sub-workflow finishes, then resumes with whatever output the
sub-workflow returned. If false, it triggers the other workflow and immediately continues
(fire-and-forget mode). Use this to reuse common routines across workflows or to split complex
processes. For instance, you might have a sub-workflow that takes data and writes to Google
Sheets, which you can call from multiple other workflows instead of duplicating those nodes.
Note: Ensure the sub-workflow has a Workflow Trigger node (which in JSON would simply be
"type": "n8n-nodes-base.workflowTrigger" with any defined input schema). The
outputs of the sub-workflow become the output of the Execute Workflow node.

External Hooks (n8n Trigger): There’s also an n8n Trigger node that can fire when certain
events in n8n happen (like when a workflow is activated, or a user triggers it via API). For most
users, this is less commonly used, but it's good to know it exists for advanced orchestration.

Notable Integrations (Apps & Services)
(Below are examples of popular third-party service nodes with JSON usage. Each of these
nodes requires appropriate credentials (set up in n8n’s Credentials and referenced by name or
ID in the JSON). The exact fields depend on the service’s API.)

Slack Node (Send Message): The Slack node lets you post messages, get info about
channels, manage files, etc., through Slack’s API. A common operation is sending a channel
message. For instance, to post a message to a channel:

community.faros.ai

community.faros.ai
json
Copy
{
 "name": "Send Slack Message",
 "type": "n8n-nodes-base.slack",

https://community.faros.ai/docs/quickstart-step-5#:~:text=,Slack
https://community.faros.ai/docs/quickstart-step-5#:~:text=,

 "typeVersion": 1,
 "parameters": {
 "resource": "message",
 "operation": "send",
 "channel": "C01234567", // channel ID or name
 "text": "Hello from n8n :tada:"
 },
 "credentials": {
 "slackApi": {
 "name": "Slack OAuth2"
 }
 }
}

Explanation: This will send the text "Hello from n8n 🎉" to the specified Slack channel. We
chose resource: "message" and operation: "send". Slack nodes often have multiple
resources like message, channel, etc. The channel can be the Slack channel ID or name (if
using name, ensure the credential has proper scopes to find it). The credentials points to a
Slack OAuth2 credential (with scopes like chat:write etc. as needed

community.faros.ai
). If you want to use blocks or attachments, the Slack node allows a JSON mode for those fields
(jsonParameters: true and provide a JSON object for attachments or blocks). The output
of this node will typically include the Slack message ID and timestamp if successful. You can
also use Slack Trigger node (not shown here) to listen for Slack events if you set up a Slack
app webhook – useful for reactive workflows (e.g., respond when a message is posted).

Google Sheets Node: This node integrates with Google Sheets to read or write spreadsheet
data. Operations include: Read rows, Append row, Update row, Delete row, Lookup etc. You
must have Google Sheets credentials (OAuth2) set up. Here’s an example to append a new
row of data to a sheet:

github.com

github.com
json
Copy
{
 "name": "Append to Sheet",
 "type": "n8n-nodes-base.googleSheets",
 "typeVersion": 4,

https://community.faros.ai/docs/quickstart-step-5#:~:text=,users.profile%3Aread
https://github.com/n8n-io/n8n/issues/1336#:~:text=,
https://github.com/n8n-io/n8n/issues/1336#:~:text=%5D%2C%20,%7D

 "parameters": {
 "operation": "append",
 "spreadsheetId": "1A2b3C4D5E6FgHiJkLMnoPQrstu", // Google Sheet
document ID
 "sheetName": "Sheet1",
 "dataMode": "autoMap",
 "options": {
 "valueInputMode": "USER_ENTERED"
 }
 // When dataMode is autoMap, no need to specify values here;
 // it will take incoming item fields matching column names.
 },
 "credentials": {
 "googleSheetsOAuth2Api": {
 "name": "Google Sheets OAuth2"
 }
 }
}

Explanation: This is configured to append a new row to the sheet named "Sheet1" in the Google
Sheets document with the given ID. We used dataMode: "autoMap", which means the node
will automatically map incoming fields to columns with the same header name. For example, if
the incoming items have JSON like { "Name": "Alice", "Email":
"alice@example.com" }, and the Google Sheet has columns "Name" and "Email", those
values will be placed accordingly. valueInputMode: "USER_ENTERED" tells Google Sheets
to treat the input as if a user typed it (so formulas in cells will recalc, etc.). If you wanted to
explicitly map fields, you could use dataMode: "define" and then provide a list of fields to
send. For reading data, the Get Many (or operation: "getAll") would require a range
(e.g., "Sheet1!A:D") and returns an array of rows. The Google Sheets node is powerful for both
exporting data from n8n to spreadsheets and importing data from spreadsheets into n8n for
further processing.

Notion Node: The Notion node connects to Notion’s API, allowing you to create or update
pages in a database, retrieve database items, or append content to pages. For example, to
query a Notion database for pages that match a filter, you might use the Database Page: Get
All operation with a filter condition:

community.n8n.io

community.n8n.io

https://community.n8n.io/t/notion-database-page-get-all-not-supporting-multiple-input-items/6523#:~:text=,
https://community.n8n.io/t/notion-database-page-get-all-not-supporting-multiple-input-items/6523#:~:text=%22name%22%3A%20%22Query%20User%22%2C%20%22type%22%3A%20%22n8n,false

json
Copy
{
 "name": "Query Notion DB",
 "type": "n8n-nodes-base.notion",
 "typeVersion": 2,
 "parameters": {
 "resource": "databasePage",
 "operation": "getAll",
 "databaseId": "YOUR_NOTION_DATABASE_ID",
 "options": {
 "filter": {
 "singleCondition": {
 "key": "Email|email",
 "condition": "equals",
 "emailValue": "={{ $json[\"email\"] }}"
 }
 }
 }
 },
 "credentials": {
 "notionApi": {
 "name": "Notion API"
 }
 }
}

Explanation: This will fetch all pages from the specified Notion database where the Email
property equals the $json["email"] value from the previous node. In Notion’s API, filters can
be complex; here we used a simple single-condition filter on an Email property. The key is
formatted as PropertyName|propertyType in the node (the Notion node needs the property
type to format the filter correctly, hence “Email|email”). The Notion node supports creating pages
(you’d specify properties to set), updating pages, searching, etc. For a Create example, you’d
use operation: "create" with a pageId (if adding to a page) or databaseId (if adding to
a database) and provide the properties object. e.g., for a database, properties: { "Name":
{"title": [{"text": {"content": "New Item"}}]}, "Status": {"select":
{"name": "Done"}} }. The structure follows Notion API JSON. The node simplifies some of
this, but often you use the No Code approach to set fields via UI. When working
programmatically, referencing Notion’s API docs for exact JSON of properties is helpful. The

output of a Notion node will be the JSON representation of the Notion page or database entries
retrieved. Use this integration to automate adding meeting notes, updating task statuses, or
generating dashboards in Notion.

GitHub Node: This node allows interactions with GitHub, such as creating issues, retrieving
commits, managing repositories, etc. As an example, to create a new issue in a GitHub
repository:

json
Copy
{
 "name": "Create GitHub Issue",
 "type": "n8n-nodes-base.github",
 "typeVersion": 1,
 "parameters": {
 "resource": "issue",
 "operation": "create",
 "owner": "octocat", // GitHub username or org
 "repository": "Hello-World", // Repo name
 "title": "Automated Issue from n8n",
 "body": "This issue was created by an n8n workflow."
 },
 "credentials": {
 "githubApi": {
 "name": "GitHub personal access token"
 }
 }
}

Explanation: This uses the GitHub node to create an issue in the octocat/Hello-World
repository. The githubApi credential should be a Personal Access Token with repo
permissions (or OAuth app token). The node could also update or read issues (different
operations), list commits (resource: "repository", operation: "getCommits" for
example), manage pull requests, etc. The output for create operations usually contains the data
of the created object (issue details including its number, URL, etc.). This is useful for automation
like logging errors or TODOs as GitHub issues, or posting deployment notes to a repo.

Database Nodes (MySQL, Postgres, etc.): n8n includes nodes for popular databases like
MySQL, PostgreSQL, MSSQL, etc. These nodes let you run queries or operations
(select/insert/update). A common usage is to run a custom SQL query. For instance, using the
MySQL node to execute a query:

community.n8n.io
json
Copy
{
 "name": "MySQL Query",
 "type": "n8n-nodes-base.mySql",
 "typeVersion": 2,
 "parameters": {
 "operation": "executeQuery",
 "query": "SELECT * FROM users WHERE id = {{ $json[\"user_id\"]
}}",
 "additionalFields": {}
 },
 "credentials": {
 "mySql": {
 "name": "My MySQL DB"
 }
 }
}

Explanation: This will run the given SQL query on the connected MySQL database (using the
credentials named "My MySQL DB"). We used an expression to inject an incoming user_id
into the query. The result will be returned as items (each row as an item with columns as fields).
You could also use operation: insert and specify table and column data in a structured
way, but often raw SQL (with executeQuery or execute) is simplest for complex operations.
Make sure your queries are safe (if using expressions, ensure they are sanitized or not directly
from user input to avoid SQL injection). For PostgreSQL, the node is similar (just type is
postgres and credentials type is postgreSql). These nodes allow you to integrate your
workflow with existing databases for reading or writing data, essentially making n8n a part of
your data pipeline.

Other Integrations: n8n has 500+ nodes for various services. Some other notable ones:

● AWS S3 (and other AWS services via dedicated nodes): e.g., S3 node can upload or
download files.

● Google Drive: for file operations (upload, download, list files).
● Email Send (SMTP): to send emails via SMTP or services like SendGrid.
● Twilio: send SMS or WhatsApp messages via Twilio.
● Stripe: create customers, process payments or react to Stripe events (Stripe Trigger).

https://community.n8n.io/t/how-to-handle-this-if-node/87709#:~:text=%E2%80%9Cparameters%E2%80%9D%3A%20,base.mySql%E2%80%9D

● Webhook (service-specific): Many services have trigger nodes (e.g., Stripe Trigger,
GitHub Trigger, Slack Trigger) that listen to incoming webhooks from those services
without you manually setting up the Webhook node.

● Jira, Trello, Asana: project management nodes to create/update tasks.
● HubSpot, Salesforce: CRM nodes to manage contacts, deals, etc.
● CSV & XML: nodes to parse or write CSV/XML, useful when dealing with file data.
● HTTP Webhook (outgoing): If you need to call an external webhook, just use the HTTP

node (as shown) or the specific integration if available.

For any specific service node, the pattern is: resource (what entity you’re dealing with),
operation (action to perform), and then fields for that operation (often mapping closely to the
service’s API fields). The best way to build these is often to configure the node in n8n’s editor
and then copy the JSON (via workflow export) as a reference.

Usage Tips:

● Expressions: In the JSON above, you see a lot of ={{ $json["..."] }}. These are
n8n expressions that pull data from previous nodes. In code, ensure they are wrapped in
double curly braces inside the JSON string. At runtime, n8n evaluates them. You can
also use $node["NodeName"].json["field"] to reference a specific node’s output,
or $items() to reference multiple items.

● Credentials: The "credentials" section in each node’s JSON links to stored creds.
In exports, they may appear as { "id": "some-id", "name": "Credential
Name" } or just the name. When programmatically creating workflows via the API, you
might only need to set the credential name (if it’s unique) or the ID. Always ensure the
credential exists in n8n beforehand.

● Node IDs and Position: You might notice id and position in examples from exports
community.faros.ai
. These are not necessary when writing a cheat sheet, but in actual workflow JSON they
place the node in the editor. They can be omitted if focusing only on the nodes’
functional config.

Connecting Nodes: In the workflow JSON, there’s a "connections" object that links node
outputs to inputs. In this cheat sheet, we show individual nodes. When building a workflow
programmatically, you’ll need to construct that connections object. For example, to connect Cron
-> GraphQL -> Function -> Slack as in our Slack reminder example, the JSON had:

 json

https://community.faros.ai/docs/quickstart-step-5#:~:text=%22name%22%3A%20%22Slack%22%2C%20%22type%22%3A%20%22n8n,1

Copy
"connections": {
 "Cron": { "main": [[{ "node": "GraphQL", "type": "main", "index":
0 }]] },
 "GraphQL": { "main": [[{ "node": "Summarize", "type": "main",
"index": 0 }]] },
 "Summarize": { "main": [[{ "node": "Slack", "type": "main",
"index": 0 }]] }
}

● This indicates Cron’s output connects to GraphQL’s input, etc.
community.faros.ai

community.faros.ai
. If creating workflows via the API, you will formulate a similar structure.

● Testing and Iteration: Start with simple nodes (Manual Trigger -> one node -> output)
to ensure your JSON is correct, then expand. You can import JSON in n8n via Workflow
-> Import from JSON to verify it visually.

This cheat sheet covered major categories and popular nodes (AI, webhooks, integrations, data
processing). With these examples, you can mix and match to automate a vast array of
workflows in n8n. Happy automating!

Ultimate N8n Automation Cheat Sheet:

Comprehensive Guide to Node Configuration

and JSON Usage
The following guide offers a detailed exploration of N8n automation capabilities, with
special focus on JSON snippets for various node configurations. This cheat sheet
serves as a comprehensive resource for both beginners and advanced users looking to
leverage the full power of N8n's workflow automation platform.

Understanding N8n's Data Structure

https://community.faros.ai/docs/quickstart-step-5#:~:text=%7D%2C%20,0
https://community.faros.ai/docs/quickstart-step-5#:~:text=,0%20%7D

N8n passes data between nodes as an array of objects, following a specific structure
that's crucial to understand for effective workflow creation. All data in N8n follows this
fundamental pattern10:
json

[
 {
 "json": {
 "property1": "value1",
 "property2": "value2"
 },
 "binary": {}
 },
 {
 "json": {
 "property1": "anotherValue1",
 "property2": "anotherValue2"
 },
 "binary": {}
 }
]

Each entry in this array is called an "item" and nodes process each item individually. This
structure enables parallel processing of multiple data pieces through your workflow10.
From version 0.166.0 onward, when using Function or Code nodes, N8n automatically
adds the json key if it's missing and wraps items in an array if needed10.

Working with N8n's JSON Data
When manipulating data in N8n, you'll frequently need to access properties from
previous nodes. You can use expressions to do this:
text

{{ $json.property1 }}

For deeper nested properties:
text

{{ $json.parent.child.property }}

https://docs.n8n.io/data/data-structure/
https://docs.n8n.io/data/data-structure/
https://docs.n8n.io/data/data-structure/

To access data from a specific previous node:
text

{{ $node["NodeName"].json.property }}

Edit Fields (Set) Node Configuration
The Edit Fields node is essential for manipulating workflow data. It allows you to set
new data and overwrite existing data1.

Manual Mapping Mode
json

{
 "newField": "{{ $json.existingField }}",
 "combinedField": "{{ $json.firstName }} {{ $json.lastName }}",
 "staticField": "This is a static value"
}

JSON Output Mode
json

{
 "mode": "jsonOutput",
 "jsonOutput": {
 "newField": "{{ $json.existingField }}",
 "processedData": {
 "id": "{{ $json.id }}",
 "timestamp": "{{ $now }}"
 }
 }
}

Dot Notation Support

https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.set/

By default, N8n supports dot notation in field names. Setting a name as number.one
with value 20 produces:
json

{
 "number": {
 "one": 20
 }
}

To disable this behavior, select Add Option > Support Dot Notation and set it to off1.

Code Node Implementation
The Code node provides powerful ways to transform data programmatically. It offers
two operational modes16:

Run Once for All Items
This processes all incoming data at once, useful for operations on multiple items:
javascript

// Example: Get Array from Object
const newItems = [];
const inputData = $input.all().json;

for (const item of inputData) {
 newItems.push({
 json: {
 modifiedData: item.originalData,
 timestamp: new Date().toISOString()
 }
 });
}

return newItems;

Run Once for Each Item

https://docs.n8n.io/integrations/builtin/core-nodes/n8n-nodes-base.set/
https://community.n8n.io/t/code-node-for-beginners/22031

This processes each item individually:
javascript

// Example: Transform single item
const item = $json;
item.processed = true;
item.modifiedAt = new Date().toISOString();
return { json: item };

Splitting JSON into Separate Items
A common task is splitting nested JSON into individual items:
javascript

// Split incoming webhook data into separate items
let results = [];
for (const item of $('Webhook').all()) {
 const students = item.json.body.students;
 for (studentKey of Object.keys(students)) {
 results.push({
 json: students[studentKey]
 });
 }
}
return results;

Using Expressions in N8n
Expressions allow dynamic parameter setting based on data from previous nodes, the
workflow, or your environment7.

Basic Expression Syntax
All expressions have the format {{ your expression here }}7.

Accessing Data from Previous Nodes
To get data from a webhook body7:

https://docs.n8n.io/code/expressions/
https://docs.n8n.io/code/expressions/
https://docs.n8n.io/code/expressions/

text

{{ $json.city }}

This accesses the incoming JSON data using N8n's $json variable and finds the value
of the city property.

AI Agent Node Configuration
The AI Agent node brings powerful AI capabilities to N8n workflows. It provides six
LangChain agent options3:

Tools Agent (Default)
This agent uses external tools and APIs to perform actions and retrieve information3.
JSON configuration example:
json

{
 "agent": "tools",
 "model": {
 "provider": "openai",
 "model": "gpt-4",
 "temperature": 0.7
 },
 "systemMessage": "You are a helpful assistant that uses tools
to find information and accomplish tasks.",
 "memory": true,
 "verbose": true
}

Conversational Agent
This agent maintains context, understands user intent, and provides relevant answers.
Ideal for chatbots and virtual assistants3:
json

{
 "agent": "conversational",
 "model": {

https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent/
https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent/
https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent/

 "provider": "openai",
 "model": "gpt-3.5-turbo",
 "temperature": 0.8
 },
 "systemMessage": "You are a helpful customer service agent for
our company.",
 "memory": true
}

Building an AI Agent with Memory
To create an AI agent with long-term memory12:
json

{
 "agent": "tools",
 "model": {
 "provider": "openai",
 "model": "gpt-4",
 "temperature": 0.7
 },
 "systemMessage": "You are an assistant with memory
capabilities. Use your tools to remember important information
from our conversations.",
 "memory": true,
 "tools": ["memory-add", "memory-retrieve"]
}

Exporting and Importing Workflows
N8n saves workflows in JSON format, allowing for easy sharing and reuse9.

Copy-Paste Method
You can copy part or all of a workflow using standard keyboard shortcuts
(Ctrl+C/Cmd+C and Ctrl+V/Cmd+V)9.

https://docs.n8n.io/workflows/export-import/
https://docs.n8n.io/workflows/export-import/

Importing JSON Workflows
To import a JSON workflow from an external source2:

1. Create a new workflow in N8n
2. Copy the JSON script
3. Paste it directly into the workflow editor using Ctrl+V/Cmd+V
4. Connect any required accounts
5. Customize as needed
6. Save the workflow

Looping Through JSON Data
Working with arrays of JSON objects is common in N8n17:

Using Item Lists Node
To split an array from incoming data:
text

{{ $json.body.block }}

This splits each block into separate items that can be processed individually17.

Tools and Converters
N8n provides several conversion tools5:

XML to JSON Converter
json

{
 "operation": "convert",
 "source": "xml",
 "target": "json",
 "data": "{{ $json.xmlData }}"
}

https://community.n8n.io/t/loop-through-json/26367
https://community.n8n.io/t/loop-through-json/26367
https://n8n.io/tools/

CSV to JSON Converter
json

{
 "operation": "convert",
 "source": "csv",
 "target": "json",
 "data": "{{ $json.csvData }}"
}

Integrating with Third-Party Services
N8n excels at connecting various platforms and services15.

Google Sheets Integration
json

{
 "operation": "appendOrUpdate",
 "sheetId": "YOUR_SHEET_ID",
 "range": "A:Z",
 "data": "{{ $json.rowData }}"
}

Automating JSON Generation with OpenAI
You can use the OpenAI node to generate structured JSON automatically11:
json

{
 "model": "gpt-4",
 "prompt": "Generate a JSON object with the following
structure: {{ $json.structure }}",
 "temperature": 0.2,
 "output": "json"
}

https://n8n.io/integrations/google-docs/and/google-sheets/
https://community.n8n.io/t/automating-json-generation-for-notion-using-openai-node/53276

Advanced Features and Tips

Accessing Data from a Webhook
When receiving data through a webhook, access specific elements using
expressions14:
text

{{ $json.body.ticker }}
{{ $json.body.tf }}

For string representations of JSON, you'll need to parse the string first14:
javascript

// In a Code node
const parsedBody = JSON.parse($json.body);
return { json: parsedBody };

Adding Data from Previous Node to Every Item
When splitting data but needing to retain information from the original source18:
javascript

// In a Code node
const results = [];
const eventName =
$('Webhook').first().json.body.event.event_name;

for (const student of $json.body.students) {
 results.push({
 json: {
 ...student,
 eventName: eventName
 }
 });
}
return results;

https://community.n8n.io/t/json-expression-to-specify-data-from-body/46790
https://community.n8n.io/t/json-expression-to-specify-data-from-body/46790
https://community.n8n.io/t/adding-data-from-previous-node-to-every-item-of-another-node/22543

Comprehensive Guide to JSON Snippets for

N8n Automation
When building automations in N8n, proper handling of JSON configurations is essential,
especially for advanced nodes like the AI Agent module. This guide compiles key JSON
snippets and patterns for effectively configuring various N8n components, with a
special focus on the AI Agent functionality.

N8n's Fundamental JSON Data Structure
In N8n, data flows between nodes in a standardized JSON structure. Understanding this
structure is crucial for effective automation:
json

[
 {
 "json": {
 "property1": "value1",
 "property2": "value2"
 },
 "binary": {}
 },
 {
 "json": {
 "property1": "anotherValue1",
 "property2": "anotherValue2"
 },
 "binary": {}
 }
]

Each item in this array represents a piece of data being processed through your
workflow. From version 0.166.0 onward, N8n automatically adds the json key if it's
missing and wraps items in an array if needed when using Function or Code nodes9.

AI Agent Module JSON Configuration

The AI Agent module in N8n provides several agent types, each requiring specific JSON
configurations. Here are snippets for the most common types:

Tools Agent (Default) Configuration
json

{
 "agent": "tools",
 "model": {
 "provider": "openai",
 "model": "gpt-4",
 "temperature": 0.7
 },
 "systemMessage": "You are a helpful assistant that uses tools
to find information and accomplish tasks.",
 "memory": true,
 "verbose": true
}

This configuration sets up the default Tools Agent that can use external tools and APIs
to perform actions and retrieve information1.

Conversational Agent Configuration
json

{
 "agent": "conversational",
 "model": {
 "provider": "openai",
 "model": "gpt-3.5-turbo",
 "temperature": 0.8
 },
 "systemMessage": "You are a helpful customer service agent for
our company.",
 "memory": true
}

https://community.n8n.io/t/how-to-get-ai-agent-to-output-raw-data/49179

The Conversational Agent is ideal for chatbots and virtual assistants, as it can maintain
context and understand user intent5.

Memory-Enabled Agent Configuration
json

{
 "agent": "tools",
 "model": {
 "provider": "openai",
 "model": "gpt-4",
 "temperature": 0.7
 },
 "systemMessage": "You are an assistant with memory
capabilities. Use your tools to remember important information
from our conversations.",
 "memory": true,
 "tools": ["memory-add", "memory-retrieve"]
}

This configuration creates an AI agent with long-term memory capabilities for
maintaining context across interactions1.

Handling AI Agent Output Issues
One common challenge with the AI Agent is that it often outputs results as a string
inside a JSON object, which can cause issues when further processing is needed:
json

{
 "output": "{\n \"countries\": [\n {\n \"name\": \"China\",\n
\"population\": 1411778724\n },\n {\n \"name\": \"India\",\n
\"population\": 1387297452\n },\n {\n \"name\": \"United
States\",\n \"population\": 331893745\n },\n {\n \"name\":
\"Indonesia\",\n \"population\": 276362965\n },\n {\n \"name\":
\"Pakistan\",\n \"population\": 225199937\n }\n]\n}"
}

https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.agent/conversational-agent/
https://community.n8n.io/t/how-to-get-ai-agent-to-output-raw-data/49179

To process this output, you'll typically need to use a Code node to parse the string into a
proper JSON object1:
javascript

// Parse the string output from AI Agent into usable JSON
const outputStr = $json.output;
let parsedData;
try {
 parsedData = JSON.parse(outputStr);
 return { json: parsedData };
} catch (error) {
 // Handle case where output is not valid JSON
 return { json: { error: "Could not parse output as JSON",
original: outputStr } };
}

Providing JSON Examples to AI Agents
When instructing AI agents to output structured JSON, you may encounter the "Single '{'
in template" error. This happens because the curly braces in your JSON example conflict
with N8n's expression syntax4.
To avoid this, you can use one of these approaches:

1. Use a Code Node to Generate the Example
javascript

// Generate JSON example before the AI Agent node
const example = {
 "data": [
 {
 "Item1": "This is a test",
 "Somedata": {
 "Frog": 6,
 "Cat": 7,
 "Dog": 9
 }
 }

https://community.n8n.io/t/how-to-get-ai-agent-to-output-raw-data/49179
https://community.n8n.io/t/how-do-i-provide-agent-ai-example-json-without-causing-single-in-template-error/69960

]
};
return { json: { example: JSON.stringify(example) } };

Then in your AI Agent node, you can reference this example with {{ $json.example
}}4.

2. Use the fromAI Function (Newer Method)
For newer versions of N8n, the $fromAI function provides a cleaner approach to handle
AI agent outputs14:
text

{{ $fromAI.json.specificProperty }}

This allows you to directly reference properties from the AI's output in subsequent
nodes without manual parsing.

Working with HTTP Tools in AI Agents
When configuring HTTP tools for AI agents that require JSON parameters:
json

{
 "url": "https://api.example.com/endpoint",
 "method": "POST",
 "headers": {
 "Content-Type": "application/json"
 },
 "bodyParametersUi": {
 "parameter": [
 {
 "name": "ids",
 "value": "{{ [\"ID\"] }}"
 }
]
 }
}

https://community.n8n.io/t/how-do-i-provide-agent-ai-example-json-without-causing-single-in-template-error/69960

The proper format for array parameters must be explicitly described in the tool's
description to ensure the AI correctly formats them6.

Preserving Input JSON Fields in AI Agent Output
A common challenge is maintaining input fields (like IDs) in the AI agent's output. Since
the AI agent might not reliably include these fields in its response, a better approach is
to use a Code node after the AI Agent to merge the original input with the agent's
output10:
javascript

// Preserve the ID from input while using AI agent output
const originalId = $node["PreviousNode"].first().json.id;
const aiOutput = $json.output;

return {
 json: {
 id: originalId,
 aiResult: aiOutput
 // Add any other fields you want to preserve
 }
};

Processing Multiple Items with AI Agents
By default, the AI Agent processes each item individually, which can be time-consuming
for batch processing. To process multiple items in a single call8:
javascript

// Collect all items into a single array for the AI agent
const allItems = $input.all().map(item => item.json);
return {
 json: {
 combinedData: allItems,
 prompt: "Process all these items at once: " +
JSON.stringify(allItems)
 }
};

https://community.n8n.io/t/ai-agent-http-tools-passing-params-in-json/77902
https://community.n8n.io/t/ai-agent-add-id-from-input-json-to-output/62367
https://community.n8n.io/t/ai-agent-and-batch-processing/79605

Structured Output Formatting for AI Agents
To get consistent structured output from AI agents, provide clear output format
instructions in your system prompt. For JSON outputs11:
json

{
 "options": {
 "systemMessage": "You are a helpful assistant. Always
respond in valid JSON format following this structure:\n\n{\n
\"category\": \"[Category of the request]\",\n \"response\":
\"[Your detailed response]\",\n \"nextSteps\": [\"step1\",
\"step2\", \"etc\"]\n}\n\nEnsure your entire response is valid
JSON."
 }
}

Using Expressions to Access JSON Data
N8n provides a powerful expression syntax for accessing and manipulating JSON data:
text

{{ $json.property1 }}

For deeper nested properties:
text

{{ $json.parent.child.property }}

To access data from a specific previous node:
text

{{ $node["NodeName"].json.property }}

	N8n Automation Nodes Cheat Sheet
	AI & LLM Integrations
	API & Webhook Integrations
	Data Processing & Logic Nodes
	Workflow Automation & Triggers
	Notable Integrations (Apps & Services)

	Ultimate N8n Automation Cheat Sheet: Comprehensive Guide to Node Configuration and JSON Usage
	Understanding N8n's Data Structure
	Working with N8n's JSON Data
	Edit Fields (Set) Node Configuration
	Manual Mapping Mode
	JSON Output Mode
	Dot Notation Support
	Code Node Implementation
	Run Once for All Items
	Run Once for Each Item
	Splitting JSON into Separate Items
	Using Expressions in N8n
	Basic Expression Syntax
	Accessing Data from Previous Nodes
	AI Agent Node Configuration
	Tools Agent (Default)
	Conversational Agent
	Building an AI Agent with Memory
	Exporting and Importing Workflows
	Copy-Paste Method
	Importing JSON Workflows
	Looping Through JSON Data
	Using Item Lists Node
	Tools and Converters
	XML to JSON Converter
	
	CSV to JSON Converter
	Integrating with Third-Party Services
	Google Sheets Integration
	Automating JSON Generation with OpenAI
	Advanced Features and Tips
	Accessing Data from a Webhook
	Adding Data from Previous Node to Every Item

	Comprehensive Guide to JSON Snippets for N8n Automation
	N8n's Fundamental JSON Data Structure
	AI Agent Module JSON Configuration
	Tools Agent (Default) Configuration
	Conversational Agent Configuration
	Memory-Enabled Agent Configuration
	Handling AI Agent Output Issues
	Providing JSON Examples to AI Agents
	1. Use a Code Node to Generate the Example
	2. Use the fromAI Function (Newer Method)
	Working with HTTP Tools in AI Agents
	Preserving Input JSON Fields in AI Agent Output
	Processing Multiple Items with AI Agents
	Structured Output Formatting for AI Agents
	Using Expressions to Access JSON Data

